

ISO 3297:2007 Certified

IARJSET

Vol. 3. Issue 10. October 2016

Optimum Polymer Concentration in EOR

Esraa Osama Moussa¹ and Attia M. Attia¹

Petroleum Engineering Department, The British University in Egypt, Cairo, Egypt¹

Abstract: Polymer Flooding is one of the most economic attractive EOR techniques which are used to improve the sweep efficiency, and in turn extract large fraction of the residual oil after primary recovery. The selection of the optimum polymer concentration should be considered as a main step in designing a polymer flooding project since it affects both the technical and economic feasibility of the project. There are several factors such as shearing, temperature, salinity and adsorption influencing the polymer concentration and viscosity required for achieving favorable mobility ratio. Thus, the impact of these factors should be considered while selecting the optimum concentration. The objectives of this research are to investigate the effect of polymer types, concentration, and adsorption and slug sizes on oil recovery at low and extremely high salinity. Rheological behavior of two types of polymer: Xanthan gum and PAM were measured in high salinity high temperature (HSHT). The effect of polymer adsorption was measured to determine the optimum polymer concentration. Results showed that the optimum polymer concentration was 500 ppm based on the relative permeability data and shear rate of 10s⁻¹.in porous media. In addition, the effects of polymer concentration and slug size on cumulative oil recovery were investigated showing that the recovery factor increases with increasing the polymer concentration with an optimum slug size 0.6 PV. These extensive laboratory tests conducted will help in selecting the optimum polymer slug, concentration at reservoir conditions that will provide the favorable mobility ratio. The economic evaluation of the project based on the simulation study and polymer properties measured in the lab showed that the polymer flooding is economically feasible, since the project earned much higher NPV than water flooding. A new correlation will be developed to be used to calculate the resistance factor at different shear rates. Finally, The economic feasibility of the selected concentration and slug size are determined.

Keywords: Enhanced oil recovery, Polymer, Slug size, Cumulative oil recovery, Adsorption, concentration.

1. INTRODUCTION

polymer is derived from two Greek words which mean rate, while 0.055 xanthan gum can give the same viscosity many parts, while part is a molecule that forms chemical compound. Co- polymer is another term used to describe two different joining polymers. In addition, , Kenneth (1991) stated that polymer flooding is possibly the most common EOR method to be applied due to its simplicity as it's considered an augmented water flood. Vargas-Vasquez (2008) reported that during the process of flooding, HPAM and polysaccharides (Xanthan gum) are the two main types of water soluble polymers used. They are injected into reservoir to form polymer gel when reacting with cross-linking agents. In addition, this polymer gel when reaches the target zones can be used to divert flow and control flow of water in zones of production.

Detling (1944) investigated the effect of adding polymer solution during water flooding process and observed that it resulted in better sweeping efficiency and that was one of the chemical enhanced oil recovery methods.

Caenn et al. (1985) stated that the use of water soluble polymers is considered an extension of water flooding and is one of the most promising enhanced oil recovery techniques. In polymer flooding operations, high molecular weight polymers are used. Furthermore, low concentration polymer solutions can give high viscosity the following purposes: achieve favorable mobility ratio, according to results of an experiment, 0.05 wt%

Chattergi & Burchardt (1981) explained that the word polyacrylamide can give 10 cp viscosity at 12.5 s⁻¹ shear at same shear rate. Zhang(2003) reported that the goals of implementing polymer flooding project is to attain the largest contact along the reservoir area to reach the maximum efficiency and to have favorable mobility ratio due to piston-like displacement.

> According to Gloria (2014), that mixing polymer with water through the process of water flooding results in a smooth flood and reduces the unfavorable fingering of water.

> Moreover, Teyyub (2014) continues to explain that it's preferable to have the mobility ratio less than one in order for the oil to have higher mobility and avoid water breakthrough and minimize the amount of water produced with the oil. Consequently, sweeping efficiency will be much better reducing the fingering effect. Water fingering occurs when the water's mobility is much greater than the oil mobility due to low water viscosity, causing oil to remain attached at rock, while water is allowed to flow which results in water breakthrough. Therefore, polymer flooding is required as its mechanism is based on: Increasing the water viscosity, reducing the mobility ratio and removing water from swept zones when Shah (1977) stated that adding these polymers to the injection water for sweeping efficiency (overall recovery) to remove oil from

ISO 3297:2007 Certified

Vol. 3, Issue 10, October 2016

swept zones and it also has an effect on fractional flow Where k: absolute permeability, kro: relative permeability which is a function of reciprocal of mobility ratio to oil, A:area, µo: oil viscosity, iw: water injection rate Sandiford & Pye (1964) conducted field and laboratory bbl/day, μ_w : water viscosity, krw: relative permeability to tests showing conclusive results as increase in recovery water, $\Delta \rho$: difference between the densities of the two factor due to reducing the amount of water produced with the oil. Since then, polymer flooding was announced as an effective enhanced oil recovery technique.

In addition, Terry & Donald E. (1966) observed that the ultimate oil recovery increased with 10.76% when a polymer solution of 0.05% concentration was used as a displacing medium through a core instead of 50,000 ppm brine solution and it was concluded that this improvement was due to a change in the viscosity after adding the polymer. Since it was observed that polymer solutions improved the water flood performance, several polymer flood projects were designed.

Moreover, Mungan(1970) pointed out that the first successful polymer flooding project that was economically worthy took place in china at Daqing field. The recovery factor increased about 20% after polymer flooding which was considered an ideal outcome

According to Litmann (1988), Polymer flooding is considered one of the most attractive enhanced oil recovery methods for not being risky and having broad range of applications. Also, it has been executed in conventional reservoirs for over than 20 years achieving an increase of (15-20) % over primary and secondary methods. This method is attained by adding polymers to the injected water to enhance the mobility ratio and sweeping efficiency by increasing its viscosity.

Leonhardt et al.(2015) illustrated that polymer flooding is the most commonly applied EOR technique due to its high success rate, but some limitations and recommendation should be taken into consideration. Under high temperature and salinity the polymer efficiency decreases. Also, the chemical, biological, mechanical degradation are one of the limitations during flooding as they affect the polymer solution's stability.

2. BACKGROUND THEORY

Mechanism of Polymer Flooding

Fractional Flow

According to Buckley & levertt (1942), the fractional flow is the ratio of water production rate to the total flow rate as shown in equation 2-2. It can also be expressed in other form as in equation 2-3 for field calculations and increasing the fractional flow indicates high water production.

$$fw = \frac{1}{1 + \frac{kro * \mu w}{krw * \mu o}} = \frac{1}{1 + \frac{1}{M}} \quad (Eq \ 2-2)$$
$$fw = \frac{1 + \left(\frac{0.0001127 \text{ kk}_{ro} \text{ A}}{\mu_0 \text{ i}_W}\right) \left[\frac{\partial p_c}{\partial x} - 0.433 \text{ A}\rho \sin \frac{p}{M}\right]}{1 + \frac{kro + \mu w}{krw + \mu_0}} \quad (Eq \ 2-3)$$

immiscible fluids, α : dip angle, fw : water cut

Litmann (1989) explained that adding polymer solution has an effect on fractional flow equation which describes the fraction of water flow rate to the total flow rate.it is a function of the mobility ratio as when the mobility ratio decreases, the WOR decreases.

Mobility Ratio:

Habermann (1960) explained that the mobility ratio is ratio between the mobility of displacing fluid (water) to the mobility of displaced fluid (oil) as shown in equation 2 - 1

$$Mr = \frac{\lambda w}{\lambda o} = \frac{\binom{kw}{\mu w}}{\binom{ko}{\mu o}} (Eq \ 2-1)$$

Where M: Mobility ratio, krw: Relative permeability of water, kro: Relative permeability of oil, µo: Viscosity of oil, uw: Viscosity of water

A favorable mobility ratio is achieved when equation 2-1 is less than or equal to one, which means that the displacing fluid is moving slower than the displaced fluid (oil) providing piston like displacement and reducing the fingering effect. Caenn et al. (1985) explained that the main function of the polymers is to control mobility of water an provide favorable mobility ratio by increasing the viscosity of the water and decreasing its mobility. Thus, the mobility ratio is decreased and allow oil to move faster into producing wells.

Polymer Rheology

Mungan, (1969) illustrated that polymers viscosity is not constant when exposed to any external force or stress and it is affected by temperature, magnitude of force ,nature of solution itself investigsting the relation between shear rates and polymer viscosity. The viscosity was measured at different shear rates ranging from 7-2000 \sec^{-1} and it was observed that the viscosity of polymer solution remained high at low shear rates, while it started to drop when rates increase. Thus, it classiefied as non-newtonian fluid due to the dependance of their viscosity on shear rates.Polymer solutions used in EOR processes are termed as shear thinning due to the decrease in its apparent viscosity at high shear rates. This decrease in viscosity results in molecules alignment with shear to reduce internal friction. Chang, (1978) pointed out that the shear rates are not well defined in the reservoir rock matrix, so it is difficult to predict the behavior of polymer solution in reservoir. Several equations are used to calculate the shear rate in formation.

Effect of salinity on Polymer Rheology

Moradi (1984) illustrated that at high salinity environments the cations present in dissolved salts causes

ISO 3297:2007 Certified

Vol. 3. Issue 10. October 2016

the double layer of negative charges around carboxylate other (hydrodynamic interaction) which is a long range group of polymer's back bone to collapse and screen. effect, then formas actual contacts, aggregates and Thus, the repulsive forces are reduced which results in networks. Yang et al.(2004) investigated the effect of decreasing the viscosity and poor performance due to the increasing HPAM & Xanthan gum deterioration of the polymer solution. Ryles (1988), concentration on increasing the viscosity, thus improving investigated the effect of Ca^{2+} ion presence at the oil recovery. An experiment was conducted using concentration above 200 ppm and observed that the HPAM of (200,600,1500,2000,2500) ppm and Xanthan polymer lost one half of its viscosity at initial conditions. gum of (840, 2250, 3440, 4790) ppm . Results showed Also Mg²⁺ gave similar effect, but some how less than that the viscosity increases with increasing the calcuim ions. In addition, Litmann, (1989) stated that there concentration for the two types of polymers. Thus the is an inversely proportional relation between the salt recovery was increased with 20% of OIIP concentration and viscofying efficiency of a polymer as for every 10% increase in salt concentration, the viscosity Effect of Concentration on Polymer Adsorption in decreased by 10%.

Algharaib & R. Gharbi (2011) conducted a study for several reservoirs where the water was too saline and concluded that polymer flooding is not preferred when dissolved salt content is above 100,000 ppm. This study was applied using core samples saturated with oil of 10 cp and brine of high salt content at temperature of 176 degrees Fahrenheit and injected polymer of 15 cp dissolved in 30,000 ppm salinity water. The oil recovery was compared to a water flood and it gave same recovery, which reflects that the polymer failed to increase recovery as the viscosity of polymer degraded because it's in direct contact with high salinity water.

Effect of Temperature on Polymer Rheology

Knight (1973) pointed out that high temperature may result in polymer degradation in two ways after studying the effect of temperature on polymer's stability and observed that at temperatures from (120 - 150) degree celsuis which is equivalent to (250-300) Fahrenhiet polymers may lose their viscosity permanently.

Additionally, high temperature accelerates oxgyen freeradical reactions, which causes the polymer to damage rapidly. Also, Knight (1973) investigated the rate of polymer degradation due to presence of oxgyen at three different temperatures 140, 120, 73 degree Fahrnenhiet and concluded that at elevated temperature, polymer deterioration takes place faster, but the total loss of viscosity is the same at the three temperatures. furthermore, Cannella (1988) observed the impact of elevated temperatures on flow behaviour of polymer solution (xanthan gum) and reported that the polymer started to behave as newtonian fluid at 80 degrees celsuis at low shear rate.

Effect of Concentration on Polymer Rheology

Wang &caudle (1970) stated that for an efficient oil recovery, a concentrated polymer slug is required and explained that increasing the polymer concentration reduces the voulme of the required slug. An experiment Selecting optimum polymer concentration was conducted using 0.4 pv slug size to attain 60 cp Before starting polymer flooding, the mobility ratio viscosity and it was concluded that the viscosity of the required must be estimated to select the optimum polymer concentration causes the molecules to interact with each on the formation salinity which is 3.5% NACL since the

polymer's

According to Sarem(1970), as the polymer solution flows through porous media, its large molecules will adhere to the rock surface as it will not be able to pass through narrow pores. This behaviour is desired to a certain limit as when polymer molecules attatch to the surface, they stretch out and plug the path of water, thus its mobility is lowered. However, it is not favorable for polymer to adsorb permanentlor slowly as this may result in excessive loss of the polymer or small flow resistance which will affect the profitability of polymer flooding project.

Omar (1983) investigated the effect of adsorption on polymer losses and concluded that when polymer molecules adsorb on rock surface, the concentration of the solution leaving the pores is lower than the concentration of the initial polymer solution injected. This reduction in polymer concentration can be used as a measure of the adsorption. Thus polymer adsorption results in an increase in the polymer resistance to flow and loss of polymer.

Methodology

In this study, several factors affecting the polymer rheology will be investigated as salinity, temperature and concentration for two different types of polymer (X.G, PAM) on order to select the optimum polymer concentration at shear rate in porous media and slug size. The effect of adsorption will be investigated in order to consider the losses of polymer and Use the selected concentration and slug size in polymer flooding as secondary and tertiary recovery.

Experimental Work

The experimental work in this research is divided into different stages to select the optimum polymer concentration, so the polymer solution is prepared first to study its rheological behavior and use the optimum concentration selected in core flooding test to observe its effect on increasing the oil recovery.

3. RESULTS AND DISCUSSION

polymer solution is a function of the concentration. Ferry concentration that will achieve the desired mobility ratio at J.D(1980) Pointed out that increasing the polymer the shear rate in the formation. It must be selected based

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3. Issue 10. October 2016

core is saturated with 35000 ppm brine solution, kro, krw and oil viscosity (cp). To achieve mobility ratio smaller than or equal to one. since wever et al.(2011) and Larsen (2014) mentioned that the shear rate in the porous media is estimated to be 10 s⁻¹, it will be used in selecting the optimum concentration, with known Kro was , Krw , oil viscosity at room temperature, so according to the mobility ration equation below:

$$\frac{krw}{kro} \times \frac{\mu_0}{\mu_w} < or = one$$

Then the required μ_w to achieve the desired mobility ratio is 4.3 cp, so the optimum concentration will be selected from the following figure which shows the relation between the shear rate and polymer viscosity at different salinities (rheological behavior):

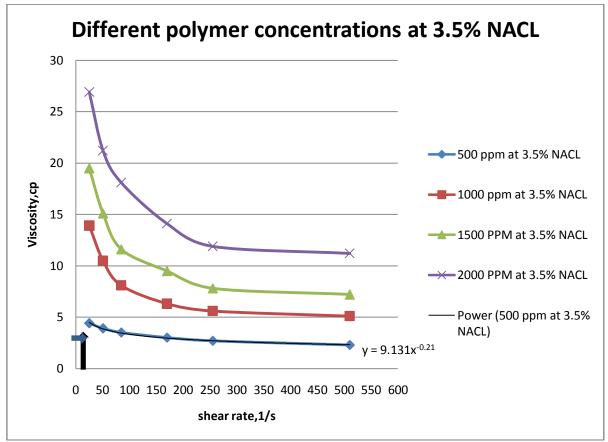


Figure 1 optimum polymer concentration at 3.5% salinity

This figure (1) shows the relation between shear rate and Polymer Adsorption Effect Polymer's Viscosity at viscosity for different polymer concentrations at 3.5% salinity and the equation for the curve 3.5% NACL that The effect of adsorption on polymer's viscosity was will be used in choosing the polymer concentration at investigated by measuring the viscosity of the solution at 10s⁻¹. According to the figure the polymer concentration different shear rates (30, 60, 100, 300, 600) before and that will give the required viscosity (4.3 cp) at the after injection of 16 PV of different polymer established conditions is 500 ppm of XANTHAN GUM. concentrations 500, 1000, 1500, 2000 ppm dissolved in Thus, the optimum polymer concentration that will be used in polymer flooding under the current conditions (kro, krw, oil viscosity) to attain the desired mobility ratio for this case is 500 ppm. However, the effect of adsorption should be taken into consideration while selecting the polymer concentration as some polymer is lost due to polymer solution with the selected concentration to be added. The adsorption for 500 ppm was estimated to be 52 µg/cc and the reduction concentration due to adsorption is polymer molecules that adheres on the rock surface which 55 ppm, so 555 ppm concentration is prepared to give 500 results in reduction in both polymer solution's ppm after adsorption.

different concentrations

3.5% NACL

These figures(2), (3), (4), (5) shows the relation between the shear rate and viscosity before and after Polymer injection of 16 pv of polymer solution through the core to investigate the effect of adsorption on polymer's viscosity adhesion on rock surface, so the amount of polymer lost at different shear rates for different polymer can be estimated and considered when preparing the concentrations (500, 1000, 1500, 2000) ppm. It is observed that the measured viscosity of the polymer solution after injection is reduced due to loss of some concentration and viscosity.

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified Vol. 3, Issue 10, October 2016

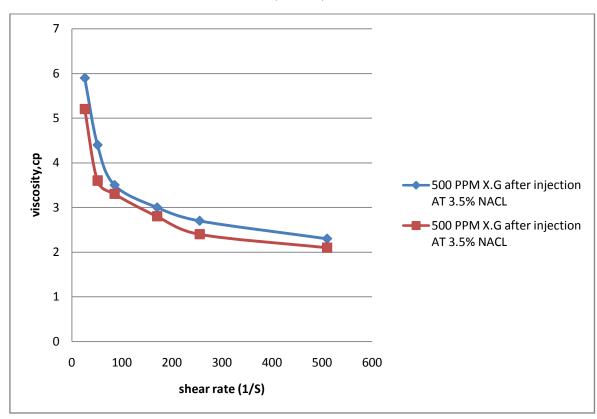


Figure 2 Effect of Adsorption on Polymer Viscosity for 500 ppm X.G

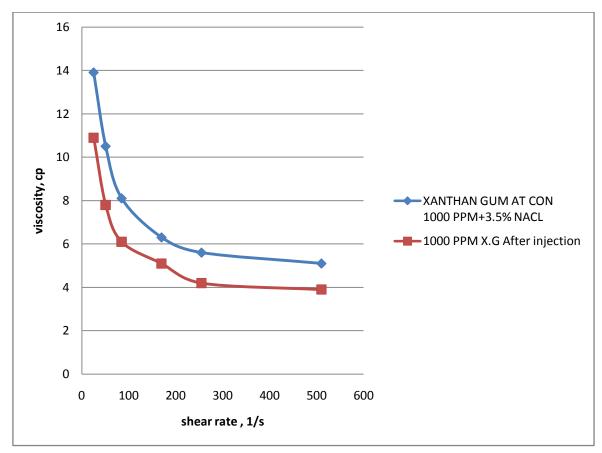


Figure 3 Effect of Adsorption on Polymer Viscosity for 1000 ppm X.G

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 10, October 2016

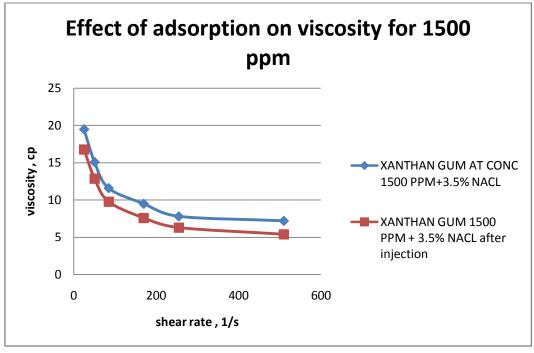


Figure 3 Effect of Adsorption on Polymer Viscosity for 1500 ppm X.G

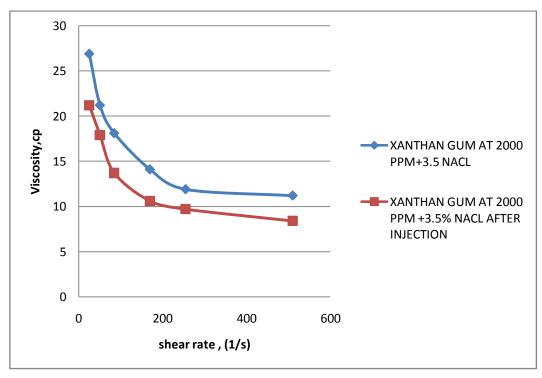


Figure 4 Effect of Adsorption on Polymer Viscosity for 2000 ppm X.G

for 500 ppm the viscosity was reduced from 5.9 to 5.2 cp Huang & K.S. Sorbie (1992) who stated that as the similar to what was mentioned in the literature review by shear rates.

at 30 1/s shear rate and further reduction was observed at polymer adsorbes on rock surface the apparent viscosity higher shear rates, while at 1000, 1500, 2000 ppm the and the non-newtonian behaviour decreases as it passes viscosity was decreased from 13.9, 19.5, 26.9 cp to 10.9, through porous media. This is a result of the reduction in 16.8, 21.2 cp at 30 1/s respectively after flowing through concentration. Thus, polymer adsorption results in the core which is about 16-20 % reduction in the original reduction of both the concentration of the solution and viscosity and hence less non-Newtonian behavior. This is hence the viscosity for all concentrations and at different

ISO 3297:2007 Certified

Vol. 3. Issue 10. October 2016

Effect Of Polymer's Concentration On Adsorption

Figure 6 Effect of Polymer Concentration on Adsorption

Figure (6) shows the relation between the polymer solution's concentration in ppm and adsorption for different polymer concentrations 500, 1000, 1500, 2000 ppm. it is observed that with increasing the polymer concentration, more polymer molecules adsorb on the rock surface increasing the value of adsorption which indicates reduction in polymer concentration that should be taken into consideration as mentioned in the literature review by Omar (1983) who investigated the effect of adsorption on polymer losses and concluded that when polymer molecules adsorb on rock surface, the concentration of the solution leaving the pores is lower than the concentration of the initial polymer solution injected. Furthermore, the adsorption increases with increasing the concentration as mentioned in the literature review by Zhang & Seright (2013) who conducted an experiment using polymer solutions with various concentrations (10-6,000) ppm and results showed that polymer adsorption increased at higher concentrations.

500 ppm polymer flooding secondary recovery

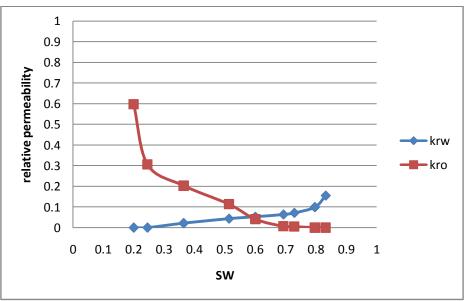


Figure 7 Relative Permeability Saturation curve for 500 ppm

This figure (7) shows the relation between the relative between the kro and krw is above 50, the relative permeability for oil (kro), water (krw) and water permeability for oil decreases with increasing the water saturation for continuous polymer flooding. It is observed saturation, but yet it is still higher than the relative that the rock is strongly water wet since the intersection permeability to oil in case of water flooding. While, the

ISO 3297:2007 Certified

IARJSET

Vol. 3, Issue 10, October 2016

relative permeability to water increases with increasing the relative permeability to water is lower compared to that in water saturation, but in case of polymer flooding, the water flooding.

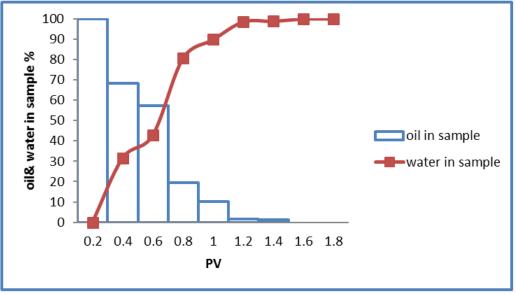


Figure (8) oil and water in sample

volume injected and the percent of oil volume in sample, gradually from 100% until it reaches 0% while the volume percent of water in sample to the total volume (oil and of water in the sample increases gradually from 0% to water).

This figure (8) shows the relation between the pore It is observed that the volume of oil in sample decreases 100%

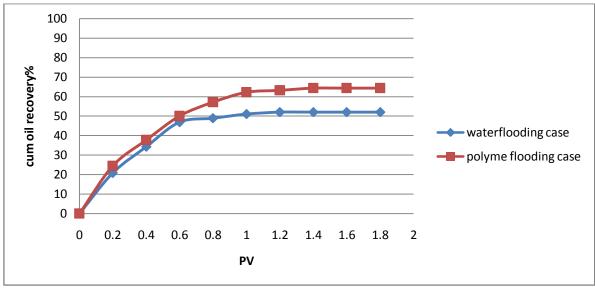


Figure 9 cumulative oil recovery in polymer flooding and water flooding

This figure (9) shows the relation between the pore efficiency in case of polymer flooding and reduction in volume injected and the cumulative oil recovery water cut as the oil moves faster than the water as a result percentage for continuous polymer flooding, the oil of adding polymer which increased the viscosity of the recovery percentage increases with increasing the pore water and lowered its mobility providing favorable volume injected till reaching the maximum recovery and mobility ratio. Recovery was 52% as shown in the figure. then becomes constant. The maximum oil recovery This is due to better sweep efficiency in case of polymer achieved with 500 ppm continuous polymer flooding was flooding and reduction in water cut as the oil moves faster 64.28%, which represents an increase 12.2% over the than the water as a result of adding polymer which water flooding at which the maximum oil recovery was increased the viscosity of the water and lowered its 52% as shown in the figure. This is due to better sweep mobility providing favorable mobility ratio.

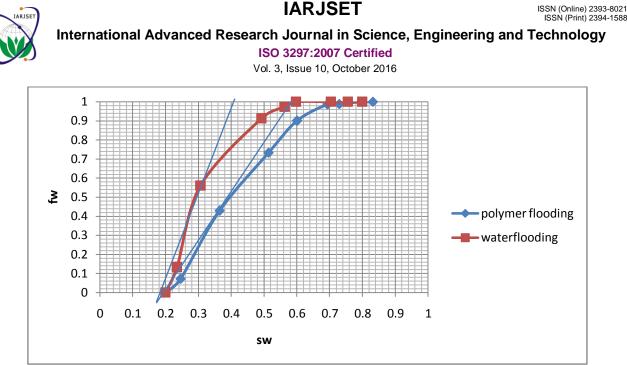


Figure 10 Fractional Flow Curve For 500 ppm Polymer Flooding And Water Flooding

flow (water cut) and water saturation for both water displacement efficiency 40%, while for polymer flooding flooding and polymer flooding and it is observed that in the SW avg increased to 0.68 providing better polymer flooding the curve is shifted to the right which indicates more water saturation (higher SW average) at the breakthrough point, thus the residual oil is less in case of polymer flooding. Also, the displacement efficiency was calculated for the water and polymer flooding by drawing Effect of polymer slug size on oil recovery a tangent line for each curve as shown above and get the avg water saturation at fw=1 to substitute in the following equation:

This figure (10) shows the relation between the fractional For water flooding the SW avg was 0.46 which gives displacement efficiency of 64%, which refers to better sweep efficiency due to reduction in water mobility providing piston like displacement.

The effect of increasing the slug size on oil recovery was investigated for polymer X.G Of 500 ppm concentration in order to select the optimum slug size. Different polymer slug sizes were injected (0.2, 0.4, 0.6, 0.8) followed by brine of 3.5% NACL till 1.8 PV to study its effect on cumulative oil recovery and select the optimum slug size

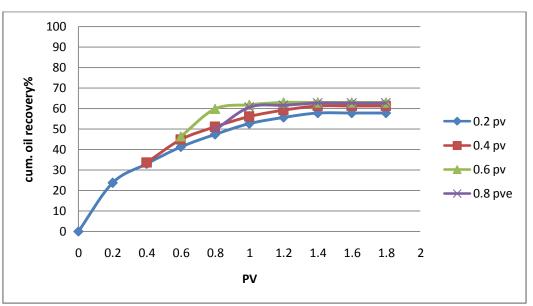


Figure 11 Effect of slug size on cumulative oil Recovery

This figure (11) shows the relation between the pore observed that with increasing the slug size from 0.2 to 0.4volume injected (PV) and cumulative oil recovered for the cumulative oil recovery increased from 57.7 % to different slug sizes of polymer 0.2, 0.4, 0.6, 0.8 PV. It is 61.2%, while the cumulative oil recovery increased from

$$ED = \frac{SWavg - swi}{1 - swi}$$

ISO 3297:2007 Certified

IARJSET

Vol. 3, Issue 10, October 2016

61.2% to 62.8% as the slug size increased from 0.4 to 0.6 62.6% which is somehow close to the recovery for 0.6 PV. pv. At slug size of 0.8 pv the cumulative oil recovery was Thus, the optimum slug size here is 0.6 PV.

Tertiary Recovery

size (0.6 PV) that were selected will be used in tertiary polymer flooding as an EOR technique.

recovery after water flooding (secondary recovery) to The optimum polymer concentration (500 ppm) and slug determine the incremental oil that can be produced using

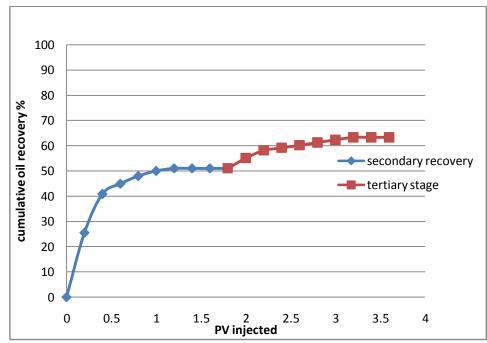


Figure 12 cum oil recovery vs Pv injected in Tertiary stage

This figure (12) shows the relation between the pore • volume injected (pv) and cumulative oil recovery % in tertiary stage. It is divided into two regions as shown, the first trend is the cumulative oil recovery% for water flooding that is 51%, while the second is the cumulative oil recovery % for tertiary stage using polymer flooding increased to 63%. This indicates that the incremental oil is 12% over secondary recovery, which reflects the technical feasibility of polymer flooding as an EOR technique as mentioned by Mungan (1970) who conducted similar experimental work resulting in incremental oil recovery of 20%.

4. CONCLUSION

The viscosity of the two types of polymer solution increases with increasing the concentration from 500 ,1000,1500,2000 ppm, and PAM gives higher viscosity than Xanthan gum of the same concentration at low salinities (0%, 3.5%, 5% NACL) and room temperature 25°C, while it starts to lose its Viscofying power at high shear rates (300,600) s⁻¹, due to shear thinning effect. Also, the effect of high salinity of 10%, 20 % NACL and high temperature of 75°C & 100°C on viscosity reduction was very significant for the two types, but Xanthan gum is more resistant to shear degradation and its viscosity is greater than PAM at harsh conditions.

- The optimum polymer (Xanthan gum) concentration that will provide favorable mobility ratio was selected as 500 ppm based on the relative permeability data obtained from water flooding, crude oil properties (viscosity) and shear rate in the porous media which is estimated $10s^{-1}$.
- The amount of polymer adsorbed on the rock increased with increasing the concentration as 2000 ppm of polymer give the highest adsorption of 442 µg/g while for 500 ppm 52 μ g/g. furthermore, adsorption results in loss of the polymer concentration which causes reduction in the viscosity of the solution.
- The optimum slug size that will provide the highest oil recovery is 0.6 PVas with increasing the slug size from 0.2 to 0.4 the cumulative oil recovery increased from 57.7 % to 61.2%, while the cumulative oil recovery increased from 61.2% to 62.8% as the slug size increased from 0.4 to 0.6 PV. At slug size of 0.8 PV the cumulative oil recovery was 62.6% which is somehow close to the recovery for 0.6 PV. Thus, the optimum slug size is 0.6 PV.
- Furthermore, the effect of polymer on fractional flow curve is significant, since there was a reduction in the water cut after using 500 ppm of X.G and better displacement efficiency was achieved. The displacement efficiency increased from 40% to 64% and the SW avg at breakthrough from 46 to 68.

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

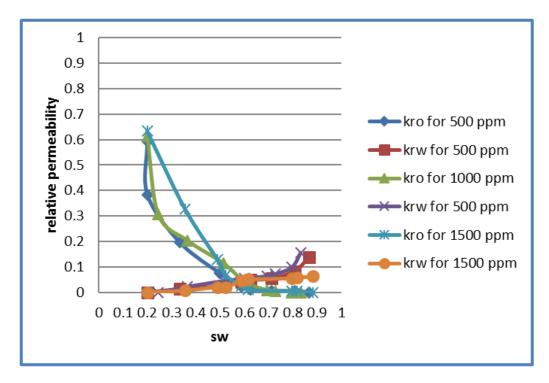
Vol. 3, Issue 10, October 2016

• The cumulative oil recovered by waterflooding is 52.2%, while the optimum polymer concentration and slug size used in oil displacement in both secondary and tertiary recovery resulted in incremental oil recovery 9.5% due to polymer flooding as a secondary recovery method as the recovery is 62% and in tertiary recovery 11% of IOIP was recovered over water flooding since the cumulative oil recovery is 63.5%. This reflects the efficiency of polymer flooding as an EOR method in field applications, since it improves the sweep efficiency and successively increases the oil recovery.

ACKNOWLEDGMENTS

This work was supported by the British University in Egypt- Petroleum Engineering and Gas technology Department.

REFERENCES


- Caenn, R., Burneit, & chilingauruan. (1985). polymer flooding. In E. Donaldson, & Donaldson (Ed.), Enhanced oil recovery II processes and operations (Vol. 17 B, pp. 157-168). New york: ELseiver.
- [2] Detling. (1944). Journal of Petroleum Technology.
- [3] Habermann. (1960). The Efficiency of Miscible Displacement. petroleum transactions, 263-265.
- [4] Knight, B. (1973, May). Reservoir stability of polymer solutions. Journal of Petroleum Technology, 25(05), 618 - 626.
- [5] Litmann, W. (1988). Polymer Flooding. Amesterdam: Elseiver
- [6] Lei, M., Zhu, Y., & Zhuoyan, Z. (2015). Development and Performance of Salt-Resistant Polymers for Chemical Flooding. SPE Middle East Oil & Gas Show and Conference, 8-11 March,

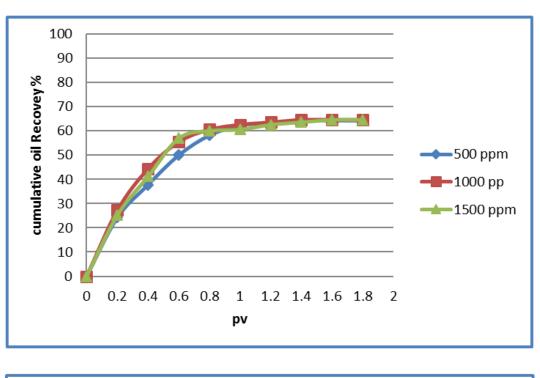
Manama, Bahrain (pp. 3-4). TEXAS: Society of Petroleum Engineers

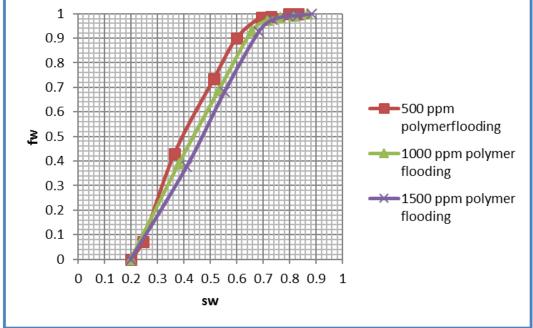
- [7] Moradi, H. (2011). Experimental investigation of polymer flow through water- and oil-wet porous media. Retrieved from open research archive: http://idtjeneste.nb.no/URN:NBN:nobibsys_brage_21632
- [8] Mungan, N. (1970). Water Flooding With Polymer Solutions. Society of petroleum engineers Journal, 3-8
- [9] Omar, A. (1983). Effect of Polymer Adsorption on Mobility Ratio. Middle East Oil Technical Conference and Exhibition, 14-17 March, Manama, Bahrain (pp. 509-511). Buhrain: society of petroleum engineers.
- [10] Pye, D. (1964). Improved Secondary Recovery by Control of Water Mobility. Journal of Petroleum Technology, 911.
- [11] Sandiford, B. (1964). Laboratory and Field studies of WaterFloods Using Polymer Solutions to Increase Oil Recoveries. Journal of petroleum Technology, 917.
- [12] Sarem, A. (1970). On the Theory of Polymer Solution Flooding Process. Fall Meeting of the Society of Petroleum Engineers of AIME, 4-7 October, Houston, Texas (pp. 2-5). TEXAS: society of petroleum engineers.
- [13] Shah, D. (1977). Improved oil Recovery by Surfactant and Polymer Flooding. New York: Academic Press INC.
- [14] S.E, B., & Leverett, M. (1942). Mechanism Of Fluid Displacment in Sands. (pp. 107-116). Texas: AIME.
- [15] Sorbie, K. S. (1991). Polymer Improved oil Recovery. New York: Blackie and Son Ltd.
- [16] Terry, D. C., & Donald E., M. (1966). The Effect of Polymer Additives on Oil Recovery In Conventional Waterflooding. SPE Four Corners Regional Meeting, 9-10 September, Farmington, New Mexico. TEXAS: Society Of Petroleum Engineers.
- [17] Wang, G., & Caudle, B. (1970). Effects of Polymer Concentrations, Slug Size And Permeability Stratification in Viscous Waterfloods. Fall Meeting of the Society of Petroleum Engineers of AIME, 4-7 October, Houston, Texas (pp. 3-4). TEXAS: Society of Petroleum Engineers.
- [18] Zhang, G., & Seright, R. (2003). Effect of Concentration on HPAM Retention in Porous Media. SPE Annual Technical Conference and Exhibition, 30 September-2 October, New Orleans, Louisiana, USA (pp. 3-8). TEXAS: society of petroleum engineers.

Appendix

Effect of polymer concentration

ISSN (Online) 2393-8021 ISSN (Print) 2394-1588





International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 10, October 2016

